
Composition and Submachine Concepts
for Sequential ASMs

Egon Börger1 and Joachim Schmid2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it (Visiting Microsoft Research, Redmond)

2 Siemens AG, Corporate Technology, D-81730 Munich, Germany
joachim.schmid@mchp.siemens.de

Abstract. We define three composition and structuring concepts which
reflect frequently used refinements of ASMs and integrate standard struc-
turing constructs into the global state based parallel ASM view of compu-
tations. First we provide an operator which combines the atomic update
view of ASMs with sequential machine execution and naturally incor-
porates classical iteration constructs into ASMs. For structuring large
machines we define their parameterization, leading to a notion of possi-
bly recursive submachine calls which sticks to the bare logical minimum
needed for sequential ASMs, namely consistency of simultaneous ma-
chine operations. For encapsulation and state hiding we provide ASMs
with local state, return values and error handling.
Some of these structuring constructs have been implemented in ASM-
Gofer. We provide also a proof-theoretic definition which supports the
use of common structured proof principles for proving properties for
complex machines in terms of properties of their components.

1 Introduction

It has often been observed that Gurevich’s definition of Abstract State Machines
(ASMs) [13] uses only conditional assignments and supports none of the classical
control or data structures. On the one side this leaves the freedom – necessary
for high-level system design and analysis – to introduce during the modeling
process any control or data structure whatsoever which may turn out to be
suitable for the application under study. On the other hand it forces the designer
to specify standard structures over and over again when they are needed, at the
latest when it comes to implement the specification. In this respect ASMs are
similar to Abrial’s Abstract Machines [1] which are expressed by non-executable
pseudo-code without sequencing or loop (Abstract Machine Notation, AMN). In
particular there is no notion of submachine and no calling mechanism. For both
Gurevich’s ASMs and Abrial’s Abstract Machines, various notions of refinement
have been used to introduce the classical control and data structures. See for
example the definition in [15] of recursion as a distributed ASM computation
(where calling a recursive procedure is modeled by creating a new instance of
multiple agents executing the program for the procedure body) and the definition

2

in [1, 12.5] of recursive AMN calls of an operation as calls to the operation of
importing the implementing machine.

Operations of B-Machines [1] and of ASMs come in the form of atomic ac-
tions. The semantics of ASMs provided in [13] is defined in terms of a function
next from states (structures) to states which reflects one step of machine execu-
tion. We extend this definition to a function describing, as one step, the result
of executing an a priori unlimited number n of basic machine steps. Since n
could go to ∞, this naturally leads to consider also non halting computations.
We adapt this definition to the view of simultaneous atomic updates in a global
state, which is characteristic for the semantics of ASMs, and avoid prescribing
any specific syntactic form of encapsulation or state hiding. This allows us to
integrate the classical control constructs for sequentialization and iteration into
the global state based ASM view of computations. Moreover this can be done in
a compositional way, supporting the corresponding well known structured proof
principles for proving properties for complex machines in terms of properties of
their components. We illustrate this by providing structured ASMs for comput-
ing arbitrary computable functions, in a way which combines the advantages of
functional and of imperative programming. The atomicity of the ASM iteration
constructor we define below turned out to be the key for a rigorous definition
of the semantics of event triggered exiting from compound actions of UML ac-
tivity and state machine diagrams, where the intended instantaneous effect of
exiting has to be combined with the request to exit nested diagrams sequentially
following the subdiagram order, see [5,6].

For structuring large ASMs extensive use has been made of macros as nota-
tional shorthands. We enhance this use here by defining the semantics of named
parameterized ASM rules which include also recursive ASMs. Aiming at a foun-
dation which supports the practitioners’ procedural understanding and use of
submachine calls, we follow the spirit of the basic ASM concept [13] where do-
main theoretic complications – arising when explaining what it means to iterate
the execution of a machine “until . . . ” – have been avoided, namely by defining
only the one-step computation relation and by relegating fixpoint (“termina-
tion”) concerns to the metatheory. Therefore we define the semantics of subma-
chine calls only for the case that the possible chain of nested calls of that machine
is finite. We are thus led to a notion of calling submachines which mimics the
standard imperative calling mechanism and can be used for a definition of re-
cursion in terms of sequential (not distributed) ASMs. This definition suffices to
justify the submachines used in [8] for a hierarchical decomposition of the Java
Virtual Machine into loading, verifying and executing machines for the five prin-
cipal language layers (imperative core, static classes, object oriented features,
exception handling and concurrency).

The third kind of structuring mechanism for ASMs we consider in this paper
is of syntactical nature, dealing essentially with name spaces. Parnas’ [17] infor-
mation hiding principle is strongly supported by the ASM concept of external
functions which provides also a powerful interface mechanism (see [4]). A more
syntax oriented form of information hiding can be naturally incorporated into

3

ASMs through the notion of local machine state, of machines with return values
and of error handling machines which we introduce in Section 5.

Some of these concepts have been implemented in ASMGofer [18], allowing
us to define executable versions of the machines for Java and the JVM in [8].

2 Standard ASMs

We start from the definition of basic sequential (i.e. non distributed) ASMs in
[13] and survey in this section our notation.

Basic ASMs are built up from function updates and skip by parallel com-
position and constructs for if then else, let and forall. We consider the choose-
construct as a special notation for using choice functions, a special class of ex-
ternal functions. Therefore we do not list it as an independent construct in the
syntactical definition of ASMs. It appears however in the appendix because the
non-deterministic selection of the choose-value is directly related to the non-
deterministic application of the corresponding deduction rule.

The interpretation of an ASM in a given state A depends on the given en-
vironment Env , i.e. the interpretation ζ ∈ Env of its free variables. We use the
standard interpretation [[t]]Aζ of terms t in state A under variable interpretation
ζ, but we often suppress mentioning the underlying interpretation of variables.
The semantics of standard ASMs is defined in [13] by assigning to each rule R,
given a state A and a variable interpretation ζ, an update set [[R]]Aζ which – if
consistent – is fired in state A and produces the next state nextR(A, ζ).

An update set is a set of updates, i.e. a set of pairs (loc, val) where loc is
a location and val is an element in the domain of A to which the location is
intended to be updated. A location is n-ary function name f with a sequence
of length n of elements in the domain of A, denoted by f 〈a1, . . . , an〉. If u is an
update set then Locs(u) denotes the set of locations occurring in elements of u
(Locs(u) = {loc | ∃val : (loc, val) ∈ u}). An update set u is called inconsistent
if u contains at least two pairs (loc, v1) and (loc, v2) with v1 6= v2 (i.e. |u| >
|Locs(u)|), otherwise it is called consistent .

For a consistent update set u and a state A, the state fireA(u), resulting from
firing u in A, is defined as state A′ which coincides with A except f A′(a) = val
for each (f 〈a〉, val) ∈ u. Firing an inconsistent update set is not allowed, i.e.
fireA(u) is not defined for inconsistent u. This definition yields the following
(partial) next state function nextR which describes one application of R in a
state with a given environment function ζ ∈ Env . We often write also next(R)
instead of nextR.

nextR : State(Σ)× Env → State(Σ)
nextR(A, ζ) = fireA([[R]]Aζ)

The following definitions describe the meaning of standard ASMs. We use R and
S for rules, x for variables, s and t for expressions, p for predicates (boolean
expressions), and u, v for semantical values and update sets. We write f A for

4

the interpretation of the function f in state A and ζ ′ = ζ x
u is the variable

environment which coincides with ζ except for x where ζ ′(x) = u.

[[x]]Aζ = ζ(x)
[[f (t1, . . . , tn)]]Aζ = f A([[t1]]Aζ , . . . , [[tn]]Aζ)
[[skip]]Aζ = ∅
[[f (t1, . . . , tn) := s]]Aζ = {(f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉, [[s]]Aζ)}
[[{R1, . . . ,Rn}]]Aζ = [[R1]]Aζ ∪ · · · ∪ [[Rn]]Aζ

[[if t then R else S]]Aζ =

{
[[R]]Aζ , if [[t]]Aζ = trueA

[[S]]Aζ , otherwise
[[let x = t in R]]Aζ = [[R]]Aζ x

v
where v = [[t]]Aζ

[[forall x with p do R]]Aζ =
⋃

v∈V

[[R]]Aζ x
v

where V = {v | [[p]]Aζ x
v

= trueA}

Remark: Usually the parallel composition {R1, . . . ,Rn} of rules Ri is denoted
by displaying the Ri vertically one above the other.

For a standard ASM R, the update set [[R]]Aζ is defined for any state A and for
any variable environment ζ, but nextR(A, ζ) is undefined if [[R]]Aζ is inconsistent.

3 Sequential Composition and Iteration

The basic composition of ASMs is parallel composition, and this is so for a fun-
damental reason explained in [14]. It is for practical purposes that in this section
we incorporate into ASMs their sequential composition and their iteration, but
in a way which fits the basic paradigm of parallel execution of all the rules of a
given ASM. The idea is to treat the sequential execution P seq Q of two rules
P and Q as an “atomic” action, in the same way as executing a function update
f (t1, . . . , tn) := s, and similarly for the iteration iterate(R) of rule R, i.e. the re-
peated application of sequential composition of R with itself, as long as possible.
The notion of repetition yields a definition of the traditional while (cond) R
construct which is similar to its proof theoretic counterpart in [1, 9.2.1]. Whereas
Abrial explicitly excludes sequencing and loop from the specification of abstract
machines [1, pg. 373], we take a more pragmatic approach and define them in
such a way that they can be used coherently in two ways, depending on what
is needed, namely to provide black-box descriptions of abstract submachines or
glass-box views of their implementation (refinement).

3.1 Sequence Constructor

If one wants to specify executing one standard ASM after another, this has to be
explicitly programmed. Consider for example the function pop back in the Stan-
dard Template Library for C++ (abstracting from concrete data structures).
The function deletes the last element in a list. Assume further that we have
already defined rules move last and delete where move last sets the list pointer

5

to the last element and delete removes the current element. One may be tempted
to program pop back as follows to first execute move last and then delete:

pop back ≡
if mode = Move then

move last
mode := Delete

if mode = Delete
delete
mode := Move

This definition has the drawback that the user of pop back must know that
the action to be completed needs two steps, which really is an implementa-
tion feature. Moreover the dynamic function mode, which is used to program
the sequential ordering, is supposed to be initialized by Move. Such an explicit
programming of execution order quickly becomes a stumbling block for large
specifications, in particular the initialization is not easily guaranteed without
introducing an explicit initialization mechanism.

Another complication arises when sequentialized rules are used to refine ab-
stract machines. In the machine on the left side of the picture below, assume
that the simultaneous execution of the two rules R and S in state 1 leads to
state 2. The machine on the right side is supposed to refine the machine on the
left side with rules R and S refined into the sequence of rules R1R2R3 and S1S2

respectively. There is no obvious general scheme to interleave the Ri -rules and
the Sj -rules, using a mode function as above. What should happen if rule R2

modifies some locations which are read by S2? In such cases R and S could not
be refined independently of each other.

R1

3R

1S
S 2

R2

R

S

1 2 1 2

Therefore we introduce a sequence constructor yielding a rule P seq Q which
can be inserted into another ASM but whose semantical effect is nevertheless
the sequential execution of the two rules P and Q . If the new rule P seq Q has
to share the same status as any other ASM rule together with which it may be
executed in parallel, one can define the execution of P seq Q only as an atomic
action. Obviously this is only a way to “view” the sequential machine from
outside; its refined view reveals its internal structure and behavior, constituted
by the non atomic execution, namely in two steps, of first P and then Q .

6

Syntactically the sequential composition P seq Q of two rules P and Q is
defined to be a rule. The semantics is defined as first executing P , obtaining an
intermediate state, followed by executing Q in the intermediate state. This is
formalized by the following definition of the update set of P seq Q in state A.

Semantics: Let P and Q be rules. We define

[[P seq Q]]A = [[P]]A ⊕ [[Q]]A
′

where A′ = nextP (A) is the state obtained by firing the update set of P in
state A, if this is defined; otherwise A′ can be chosen arbitrarily. The operator
⊕ denotes the merging for update sets.

The merging of two update sets u and v by the operator ⊕ reflects that
an update in v overwrites an update in u if it is for the same location, since
through a destructive assignment s := t the previous value of s is lost. We
merge an update set v with u (i.e. u ⊕ v) only if u is consistent, otherwise we
stick to u because then we want both fireA(u) and fireA(u ⊕ v) to be undefined.

u ⊕ v =

{
{(loc, val) | (loc, val) ∈ u ∧ loc 6∈ Locs(v)} ∪ v , consistent(u)
u, otherwise

Proposition 1. (Persistence of inconsistency)

If [[P]]A is not consistent, then [[P seq Q]]A = [[P]]A

The next proposition shows that the above definition of the seq constructor cap-
tures the intended classical meaning of sequential composition of machines, if we
look at them as state transforming functions1. Indeed we could have defined seq
via the composition of algebra transforming functions, similarly to its axiomati-
cally defined counterpart in Abrial’s AMN [1] where seq comes as concatenation
of generalized substitutions.

Proposition 2. (Compositionality of seq)

next(P seq Q) = next(Q) ◦ next(P)

This characterization illustrates that seq has the expected semiring properties
on update sets.

Proposition 3. The ASM constructor seq has a left and a right neutral element
and is associative, i.e. for rules P , Q , and R the following holds:

[[skip seq R]]A = [[R seq skip]]A = [[R]]A

[[P seq (Q seq R)]]A = [[(P seq Q) seq R]]A

1 We assume that f (x) is undefined if x is undefined, for every function f (f is strict).

7

3.2 Iteration Constructor

Once a sequence operator is defined, one can apply it repeatedly to define the
iteration of a rule. This provides a natural way to define for ASMs an itera-
tion construct which encapsulates a computation with a finite but a priori not
explicitly known number of iterated steps into an atomic action (one-step com-
putation). As a by-product we obtain the classical loop and while constructs, cf.
[1, 9.2].

The intention of rule iteration is to execute the given rule again and again –
as long as needed and as long as possible. We define

Rn =

{
skip, n = 0
Rn−1 seq R, n > 0

Denote by An the state obtained by firing the update set of the rule Rn in state
A, if defined (i.e. An = nextRn (A)).

There are two natural stop situations for iterated ASM rule application,
namely when the update set becomes empty (the case of successful termination)
and when it becomes inconsistent (the case of failure, given the persistence of
inconsistency as formulated in Proposition 1).2 Both cases provide a fixpoint
lim

n→∞
[[Rn]]A for the sequence ([[Rn]]A)n>0 which becomes constant if a number

n is found where the update set of R, in the state obtained by firing Rn−1, is
empty or inconsistent.

Proposition 4. (Fixpoint Condition)

∀m ≥ n > 0 the following holds:
if [[R]]An−1 is not consistent or if it is empty, then [[Rm]]A = [[Rn]]A

Therefore we extend the syntax of ASM rules by iterate(R) to denote the iter-
ation of rule R and define its semantics as follows.

Semantics: Let R be a rule. We define

[[iterate(R)]]A = lim
n→∞

[[Rn]]A, if ∃n ≥ 0 : [[R]]An = ∅ ∨ ¬consistent([[R]]An)

The sequence ([[Rn]]A)n>0 eventually becomes constant only upon termination or
failure. Otherwise the computation diverges and the update set for the iteration
is undefined. An example for a machine R which naturally produces a diverging
(though in other contexts useful) computation is iterate(a := a + 1), see [16,
Exl. 2, pg. 350].
2 We do not include here the case of an update set whose firing does not change the

given state, although including this case would provide an alternative stop criterion
which is also viable for implementations of ASMs.

8

Example 1. (Usage of iterate for starting the Java class initialization process)

The ASM model for Java in [9] includes the initialization of classes which in Java
is done implicitly at the first use of a class. Since the Java specification requires
that the superclass of a class c is initialized before c, the starting of the class
initialization is iterated until an initialized class c′ is encountered (i.e. satisfying
initialized(c′), as eventually will happen towards the top of the class hierarchy).
We define the initialization of class class as follows:

initialize ≡
c := class seq iterate(if ¬initialized(c) then

createInitFrame(c)
if ¬initialized(superClass(c)) then

c := superClass(c))

The finiteness of the acyclic class hierarchy in Java guarantees that this rule
yields a well defined update set. The rule abstracts from the standard sequential
implementation (where obviously the class initialization is started in a number
of steps depending on how many super classes the given class has which are not
yet initialized) and offers an atomic operation to push all initialization methods
in the right order onto the frame stack.

The macro to create new initialization frames can be defined as follows. The
current computation state, consisting of method , program, program position pos
and localVars, is pushed onto the frames stack and is updated for starting the
initialization method of the given class at position 0 with empty local variables
set.

createInitFrame(c) ≡
classState(c) := InProgress
frames := frames · (method , program, pos, localVars)
method := c/<clinit>
program := body(c/<clinit>)
pos := 0
localVars := ∅

While and Until. The iteration yields a natural definition of classical loop and
while constructs. A while loop repeats the execution of the while body as long as
a certain condition holds.

while (cond) R = iterate(if cond then R)

This while loop, if started in state A, terminates if eventually [[R]]An becomes
empty or the condition cond becomes false in An (with consistent and non
empty previous update sets [[R]]Ai and previous states Ai satisfying cond). If the
iteration of R reaches an inconsistent update set (failure) or yields an infinite
sequence of consistent non empty update sets, then the state resulting from
executing the while loop starting in A is not defined (divergence of the while

9

loop). Note that the function next(while (cond) R) is undefined in these two
cases on A.

A while loop may satisfy more than one of the above conditions, like while
(false) skip. The following examples illustrate the typical four cases:

• (success) while (cond) skip
• (success) while (false) R
• (failure) while (true) a := 1

a := 2
• (divergence) while (true) a := a

Example 2. (Usage of while)

The following iterative ASM defines a while loop to compute the factorial func-
tion for given argument x and stores the result in a location fac. It uses multi-
plication as given (static) function. We will generalize this example in the next
section to an ASM analogue to the Böhm-Jacopini theorem on structured pro-
gramming [3].

compute fac ≡ (fac := 1) seq (while (x > 0) fac := x ∗ fac
x := x − 1)

Remark: As usual one can define the until loop in terms of while and seq as
first executing the body once and then behaving like a while loop:

do R until (cond) = R seq (while (¬cond) R).

The sequencing and iteration concepts above apply in particular to the Mealy-
ASMs defined in [4] for which they provide the sequencing and the feedback
operators. The fundamental parallel composition of ASMs provides the concept
of parallel composition of Mealy automata for free. These three constructs allow
one to apply to Mealy-ASMs the decomposition theory which has been developed
for finite state machines in [10].

3.3 Böhm-Jacopini ASMs

The sequential and iterative composition of ASMs yields a class of machines
which are known from [3] to be appropriate for the computation of partial re-
cursive functions. We illustrate in this section how these Böhm-Jacopini-ASMs
naturally combine the advantages of the Gödel-Herbrand style functional defi-
nition of computable functions and of the Turing style imperative description of
their computation.

Let us call Böhm-Jacopini-ASM any ASM which can be defined, using the
sequencing and the iterator constructs, from basic ASMs whose functions are
restricted as defined below to input, output, controlled functions and some simple
static functions. For each Böhm-Jacopini-ASM M we allow only one external
function, a 0-ary function for which we write inM . The purpose of this function

10

is to contain the number sequence which is given as input for the computation of
the machine. Similarly we write outM for the unique (0-ary) function which will
be used to receive the output of M . Adhering to the usual practice one may also
require that the M -output function appears only on the left hand side of M -
updates, so that it does not influence the M -computation and is not influenced by
the environment of M . As static functions we admit only the initial functions of
recursion theory, i.e. the following functions from Cartesian products of natural
numbers into the set N of natural numbers: +1, all the projection functions U n

i ,
all the constant functions C n

i and the characteristic function of the predicate
6= 0.

Following the standard definition we call a number theoretic function f :
N

n → N computable by an ASM M if for every n-tuple x ∈ Nn of arguments
on which f is defined, the machine started with input x terminates with output
f (x). By “M started with input x” we mean that M is started in the state where
all the dynamic functions different from inM are completely undefined and where
inM = x . Assuming the external function inM not to change its value during an
M -computation, it is natural to say that M terminates in a state with output
y , if in this state outM gets updated for the first time, namely to y .

Proposition 5. (Structured Programming Theorem)

Every partial recursive function can be computed by a Böhm-Jacopini-
ASM.

Proof. We define by induction for each partial recursive function f a machine
F computing it. Each initial function f of recursion theory is computed by the
following machine F consisting of only one function update which reflects the
defining equation of f .

F ≡ outF := f (inF)

For the inductive step it suffices to construct, for any partial recursive definition
of a function f from its constituent functions fi , a machine F which mimics the
standard evaluation procedure underlying that definition. We define the following
macros for using a machine F for given arguments in, possibly including to assign
its output to a location out :

F (in) ≡ inF := in seq F
out := F (in) ≡ F (in) seq out := outF

We start with the case of function composition. If functions g , h1, . . . , hm are
computed by Böhm-Jacopini-ASMs G ,H1, . . . ,Hm , then their composition f de-
fined by f (x) = g(h1(x), . . . , hm(x)) is computed by the following machine3 F :

F ≡ {H1(inF), . . . ,Hm(inF)} seq outF := G(outH1 , . . . , outHm
)

3 For reasons of simplicity but without loss of generality we assume that the subma-
chines have pairwise disjoint signatures.

11

Unfolding this structured program reflects the order one has to follow for eval-
uating the subterms in the defining equation for f , an order which is implicitly
assumed in the equational (functional) definition. First the input is passed to
the constituent functions hi to compute their values, whereby the input func-
tions of Hi become controlled functions of F . The parallel composition of the
submachines Hi(inF) reflects that any order is allowed here. Then the sequence
of outHi

is passed as input to the constituent function g . Finally g ’s value on
this input is computed and assigned as output to outF .

Similarly let a function f be defined from g , h by primitive recursion:

f (x , 0) = g(x), f (x , y + 1) = h(x , y , f (x , y))

and let Böhm-Jacopini-ASMs G ,H be given which compute g , h. Then the fol-
lowing machine F computes f , composed as sequence of three submachines. The
start submachine of F evaluates the first defining equation for f by initializ-
ing the recursor rec to 0 and the intermediate value ival to g(x). The while
submachine evaluates the second defining equation for f for increased values
of the recursor as long as the input value y has not been reached. The output
submachine provides the final value of ival as output.

F ≡ let (x , y) = inF in
{ival := G(x), rec := 0} seq
(while (rec < y) {ival := H (x , rec, ival), rec := rec + 1}) seq
outF := ival

If f is defined from g by the µ-operator, i.e. f (x) = µy(g(x , y) = 0), and if
a Böhm-Jacopini-ASM G computing g is given, then the following machine F
computes f . The start submachine computes g(x , rec) for the initial recursor
value 0, the iterating machine computes g(x , rec) for increased values of the
recursor until 0 shows up as computed value of g , in which case the reached
recursor value is set as output.

F ≡ {G(inF , 0), rec := 0} seq
(while (outG 6= 0) {G(inF , rec + 1), rec := rec + 1}) seq
outF := rec

Remark. The construction of Böhm-Jacopini-ASMs illustrates, through the ide-
alized example of computing recursive functions, how ASMs allow to pragmat-
ically reconcile the often discussed conceptual dichotomy between functional
and imperative programming. In the context of discussing the “functional pro-
gramming language” Gödel used to exhibit undecidable propositions in Principia
Mathematica, as opposed to the “imperative programming language” developed
by Turing and used in his proof of the unsolvability of the Entscheidungsproblem
(see [7]), Martin Davis [12] states:

“The programming languages that are mainly in use in the software
industry (like C and FORTRAN) are usually described as being imper-
ative. This is because the successive lines of programs written in these

12

languages can be thought of as commands to be executed by the com-
puter . . . In the so-called functional programming languages (like LISP)
the lines of a program are definitions of operations. Rather than telling
the computer what to do, they define what it is that the computer is to
provide.”

The equations which appear in the Gödel-Herbrand type equational definition of
partial recursive functions “define what it is that the computer is to provide” only
within the environment for evaluation of subterms. The corresponding Böhm-
Jacopini-ASMs constructed above make this context explicit, exhibiting how to
evaluate the subterms when using the equations (updates), as much as needed
to make the functional shorthand work correctly. We show in the next section
how this use of shorthands for calling submachines, which appear here only in
the limited context of structured WHILE programs, can be generalized as to
make it practical without loss of rigor.

4 Parameterized Machines

For structuring large ASMs extensive use has been made of macros which, se-
mantically speaking, are mere notational shorthands, to be substituted by the
body of their definition. We enhance this use here by introducing named param-
eterized ASM rules which in contrast to macros also support recursive ASMs.

We provide a foundation which justifies the application of named parameter-
ized ASMs in a way which supports the practitioners’ procedural understanding.
Instead of guaranteeing within the theory, typically through a fixpoint operator,
that under certain conditions iterated calls of recursive rules yield as “result” a
first-class mathematical “object” (namely the fixpoint), we take inspiration from
the way Kleene proved his recursion theorem [16, Section 66] and leave it to the
programmer to guarantee that a possibly infinite chain of recursive procedure
calls is indeed well founded with respect to some partial order.

We want to allow a named parameterized rule to be used in the same way
as all other rules. For example, if f is a function with arity 1 and R is a named
rule expecting two parameters, then R(f (1), 2) should be a legitimate rule, too.
In particular we want to allow rules as parameters, like in the following example
where the given dynamic function stdout is updated to ”hello world”:

rule R(output) =
output("hello world")

rule output to stdout(msg)
stdout := msg

R(output to stdout)

Therefore we extend the inductive syntactic definition for rules by the following
new clause, called a rule application with actual parameters a1, . . . , an :

R(a1, . . . , an)

13

and coming with a rule definition of the following form:

rule R(x1, . . . , xn) = body

where body is a rule. R is called the rule name, x1, . . . , xn are the formal pa-
rameters of the rule definition. They bind the free occurrences of the variables
x1, . . . , xn in body .

The basic intuition the practice of computing provides for the interpretation
of a named rule is to define its semantics as the interpretation of the rule body
with the formal parameters replaced by the actual arguments. In other words
we unfold nested calls of a recursive rule R into a sequence R1,R2, . . . of rule
incarnations where each Ri may trigger one more execution of the rule body,
relegating the interpretation of possibly yet another call of R to the next in-
carnation Ri+1. This may produce an infinite sequence, namely if there is no
ordering of the procedure calls with respect to which the sequence will decrease
and reach a basis for the recursion. In this case the semantics of the call of R is
undefined. If however a basis for the recursion does exist, say Rn , it yields a well
defined value for the semantics of R through the chain of successive calls of Ri ;
namely for each 0 ≤ i < n with R = R0, Ri inherits its semantics from Ri+1.

Semantics: Let R be a named rule declared by rule R(x1, . . . , xn) = body , let
A be a state.

If [[body [a1/x1, . . . , an/xn]]]A is defined, then
[[R(a1, . . . , an)]]A = [[body [a1/x1, . . . , an/xn]]]A

For the rule definition rule R(x) = R(x) this interpretation yields no value for
any [[R(a)]]A, see [16, Example 1, page 350]. In the following example the update
set for R(x) is defined for all x ≤ 10, with the empty set as update set, and is
not defined for any x > 10.

rule R(x) = if x < 10 then R(x + 1)
if x = 10 then skip
if x > 10 then R(x + 1)

Example 3. (Defining while by a named rule)

Named rules allow us to define the while loop recursively instead of iteratively:

rule while(cond ,R) =
if cond then

R seq while(cond ,R)

This recursively defined while operator behaves differently from the iteratively
defined while of the preceding section in that it leads to termination only if the
condition cond will become eventually false, and not in the case that eventually
the update set of R becomes empty. For example the semantics of the recursively
defined while(true, skip) is not defined.

14

Example 4. (Starting Java class initialization)

We can define the Java class initialization of Example 1 also in terms of a recur-
sive named rule, avoiding the local input variable to which the actual parameter
is assigned at the beginning.

rule initialize(c) =
if initialized(superClass(c)) then

createInitFrame(c)
else

createInitFrame(c) seq initialize(superClass(c))

Remark: Iterated execution of (sub)machines R, started in state A, unavoidably
leads to possibly undefined update sets [[R]]A. As a consequence [[R]]A = [[S]]A

denotes that either both sides of the equation are undefined or both are defined
and indeed have the same value. In the definitions above we adhered to an
algorithmic definition of [[R]]A, namely by computing its value from the computed
values [[S]]A of the submachines S of R. In the appendix we give a deduction
calculus for proving statements [[R]]A = u meaning that [[R]]A is defined and has
value u.

5 Further Concepts

In this section we enrich named rules with a notion of local state, show how
parameterized ASMs can be used as machines with return value, and introduce
error handling for ASMs which is an abstraction of exception handling as found
in modern programming languages.

5.1 Local State

Basic ASMs come with a notion of state in which all the dynamic functions are
global. The use of only locally visible parts of the state, like variables declared
in a class, can naturally be incorporated into named ASMs. It suffices to extend
the definition of named rules by allowing some dynamic functions to be declared
as local, meaning that each call of the rule works with its own incarnation of
local dynamic functions f which are to be initialized upon rule invocation by an
initialization rule Init(f). Syntactically we allow definitions of named rules of
the following form:

rule name(x1, . . . , xn) =
local f1[Init1]
...
local fk [Initk]
body

where body and Initi are rules. The formal parameters x1, . . . , xn bind the free
occurrences of the corresponding variables in body and Initi . The functions

15

f1, . . . , fk are treated as local functions whose scope is the rule where they are
introduced. They are not part of the signature of the ASM. Initi is a rule used
for the initialization of fi . We write local f := t for local f [f := t].

For the semantic interpretation of a call of a rule with local dynamic func-
tions, the updates to the local functions are collected together with all other
function updates made through executing the body. This includes the updates
required by the initialization rules. The restriction of the scope of the local
functions to the rule definition is obtained by then removing from the update
set u, which is available after the execution of the body of the call, the set
Updates(f1, . . . , fk) of updates concerning the local functions f1, . . . , fk . This leads
to the following definition.

Semantics: Let R be a rule declaration with local functions as given above.
If the right side of the equation is defined, we set:

[[R(a1, . . . , an)]]A =
[[({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]]]A \Updates(f1, . . . , fk)

We assume that there are no name clashes for local functions between different
incarnations of the same rule (i.e. each rule incarnation has its own set of local
dynamic functions).

Example 5. (Usage of local dynamic functions)

The use of local dynamic functions is illustrated by the following rule computing
a function f defined by a primitive recursion from functions g and h which are
used here as static functions. The rule mimics the corresponding Böhm-Jacopini
machine in Proposition 5.

rule F (x , y) =
local ival := g(x)
local rec := 0
(while (rec < y) {ival := h(x , rec, ival), rec := rec + 1}) seq
out := ival

5.2 ASMs with Return Value

In the preceding example, for outputting purposes the value resulting from the
computation is stored in a global dynamic function out . This formulation violates
good information hiding principles. To store the return value of a rule R in a
location which is determined by the rule caller and is independent of R, we use
the following notation for a new rule:

l ← R(a1, . . . , an)

where R is a named rule with n parameters in which a 0-ary (say reserved)
function result does occur with the intended role to store the return value. Let

16

rule R(x1, . . . , xn) = body be the declaration for R, then the semantic of l ←
R(a1, . . . , an) is defined as the semantics of Rl(a1, . . . , an) where Rl is defined
like R with result replaced by l :

rule Rl(x1, . . . , xn) = body [l/result]

In the definition of the rule R by body , the function name result plays the role of
a placeholder for a location, denoting the interface which is offered for communi-
cating results from any rule execution to its caller. One can apply simultaneously
two rules l ← R(a1, . . . , an) and l ′ ← R(a ′1, . . . , a

′
n) with different return values

for l and l ′.
Remark: When using l ← R(a1, . . . , an) with a term l of form f (t1, . . . , tn), a
good encapsulation discipline will take care that R does not modify the values
of ti , because they contribute to determine the location where the caller expects
to find the return value.

Example 6. (Using return values)

Using this notation the above Example 5 becomes f (x , y)← F (x , y) where more-
over one can replace the use of the auxiliary static functions g , h by calls to sub-
machines G ,H computing them, namely ival ← G(x) and ival ← H (x , rec, ival).

Example 7. (Recursive machine computing the factorial function, using mul-
tiplication as static function.)

rule Fac(n) =
local x := 1
if n = 1 then

result := 1
else

(x ← Fac(n − 1)) seq result := n ∗ x

5.3 Error Handling

Programming languages like C++ or Java support exceptions to separate error
handling from “normal” execution of code. Producing an inconsistent update set
is an abstract form of throwing an exception. We therefore introduce a notion
of catching an inconsistent update set and of executing error code.

The semantics of try R catch f (t1, . . . , tn) S is the update set of R if either
this update set is consistent (“normal” execution) or it is inconsistent but the
location loc determined by f (t1, . . . , tn) is not updated inconsistently. Otherwise
it is the update set of S .

Since the rule enclosed by the try block is executed either completely or not
at all, there is no need for any finally clause to remove trash.

Semantics: Let R and S be rules, f a dynamic function with arguments
t1, . . . , tn . We define

17

[[try R catch f (t1, . . . , tn) S]]A ={
v , ∃ v1 6= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
u, otherwise

where u = [[R]]A and v = [[S]]A are the update sets of R and S respectively, and
loc is the location f 〈[[t1]]A, . . . , [[tn]]A〉.

6 Related Work

The sequence operator defined by Zamulin in [19] differs from our concept for
rules leading to inconsistent update sets where it is not associative, due to Za-
mulin’s definition of the merge operator for update sets. For consistent update
sets Zamulin’s loop constructor coincides with our while definition in Example
2.

In Anlauff’s XASM [2], calling an ASM is the iteration of a rule until a
certain condition holds. [2] provides no formal definition of this concept, but
for consistent update sets the XASM implementation seems to behave like our
definition of iterate.

Named rules with parameters appear in the ASM Workbench [11] and in
XASM [2], but with parameters restricted to terms. The ASM Workbench does
not allow recursive rules. Recursive ASMs have also been proposed by Gurevich
and Spielmann [15]. Their aim was to justify recursive ASMs within distributed
ASMs [13]. If R is a rule executed by agent a and has two recursive calls to R,
then a creates two new agents a1 and a2 which execute the two corresponding
recursive calls. The agent a waits for termination of his slaves a1 and a2 and then
combines the result of both computations. This is different from our definition
where executing a recursive call needs only one step, from the caller’s view, so
that the justification remains within purely sequential ASMs without invoking
concepts from distributed computing. Through our definition the distinction
between suspension and reactivation tasks in the iterative implementation of
recursion becomes a matter of choosing the black-box or the glass-box view for
the recursion. The updates of a recursive call are collected and handed over to
the calling machine as a whole to determine the state following in the black-box
view the calling state. Only the glass-box view provides a refined inspection of
how this collection is computed.

Acknowledgment. For critical comments on earlier versions of this paper4 we
thank Giuseppe Del Castillo, Martin Davis, Jim Huggins, Alexander Knapp,
Peter Päppinghaus, Robert Stärk, Margus Vianes, and Alexandre Zamulin.

4 presented to the IFIP Working Group 1.3 on Foundations of System Specification,
Bonas (France) 13.-15.9.1999, and to the International ASM’2000 Workshop, Ascona
(Switzerland) 20.-24.3.2000

18

A Deduction Rules for Computing Update Sets

The following rules provide a calculus for computing the semantics of standard
ASMs and for the constructs introduced in this paper.

We use R, Ri , and S for rules, f for functions, x for variables, s and t for
expressions, p for predicates (boolean expressions), and u and v for semantical
values and update sets.

Standard ASMs

∀ i : [[ti]]Aζ = vi

[[f (t1, . . . , tn)]]Aζ = f A(v1, . . . , vn) [[x]]Aζ = ζ(x)
variable(x)

[[skip]]Aζ = ∅
[[t]]Aζ = trueA, [[R]]Aζ = u

[[if t then R else S]]Aζ = u

∀ i : [[ti]]Aζ = vi , [[s]]Aζ = u

[[f (t1, . . . , tn) := s]]Aζ = {(f 〈v1, . . . , vn〉, u)}
[[t]]Aζ = falseA, [[S]]Aζ = u

[[if t then R else S]]Aζ = u

∀ i : [[Ri]]Aζ = ui

[[{R1, . . . ,Rn}]]Aζ = u1 ∪ . . . ∪ un

[[t]]Aζ = v , [[R]]Aζ x
v

= u

[[let x = t in R]]Aζ = u

V = {v1, . . . , vn}, ∀ i : [[R]]Aζ x
vi

= ui

[[forall x with p do R]]Aζ = u1 ∪ . . . ∪ un
V = {v | [[p]]Aζ x

v
= trueA}

[[p]]Aζ x
v

= trueA, [[R]]Aζ x
v

= u

[[choose x with p do R]]Aζ = u

[[choose x with p do R]]Aζ = ∅
6 ∃ v : [[p]]Aζ x

v
= trueA

Sequential composition

[[R]]Aζ = u, [[S]]fireA(u)
ζ = v

[[R seq S]]Aζ = u ⊕ v
consistent(u)

[[R]]Aζ = u

[[R seq S]]Aζ = u
inconsistent(u)

Iteration

[[Rn]]Aζ = u

[[iterate(R)]]Aζ = u
n ≥ 0, inconsistent(u)

[[Rn]]Aζ = u, [[R]]fireA(u)
ζ = ∅

[[iterate(R)]]Aζ = u
n ≥ 0, consistent(u)

19

Parameterized Rules with local state
Let R be a named rule as in Section 5.1.

[[({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]]]Aζ = u

[[R(a1, . . . , an)]]Aζ = u \Updates(f1, . . . , fk)

Error Handling

[[R]]Aζ = u

[[try R catch f (t1, . . . , tn) S]]Aζ = u
6 ∃ v1 6= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
where loc = f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉

[[R]]Aζ = u, [[S]]Aζ = v

[[try R catch f (t1, . . . , tn) S]]Aζ = v
∃ v1 6= v2 : (loc, v1) ∈ u ∧ (loc, v2) ∈ u
where loc = f 〈[[t1]]Aζ , . . . , [[tn]]Aζ 〉

Remark: The second rule for choose reflects the decision in [13] that an ASM
does nothing when there is no choice. Obviously also other decisions could be
formalized in this manner, e.g. yielding instead of the empty set an update set
which contains an error report.

Remark: The rule for forall is formulated as finitary rule, i.e. it can be applied
only for quantifying over finite sets. The set theoretic formulation in Section 2
is more general and can be formalized by an infinitary rule. It would be quite
interesting to study different classes of ASMs, corresponding to different finitary
or infinitary versions of the forall construct.

20

References

1. J. R. Abrial. The B-Book. Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. M. Anlauff. XASM – An extensible, component-based Abstract State Machines
language. In Y. Gurevich, M. Odersky, and L. Thiele, editors, Proc. ASM 2000,
Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

3. C. Böhm and G. Jacopini. Flow diagrams, Turing Machines, and languages with
only two formation rules. Communications of the ACM, 9(5):366–371, 1966.

4. E. Börger. High level system design and analysis using Abstract State Machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends
in Applied Formal Methods (FM-Trends 98), number 1641 in Lecture Notes in
Computer Science, pages 1–43. Springer-Verlag, 1999.

5. E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for UML Activity
Diagrams. In T. Rust, editor, Proc. AMAST 2000, Lecture Notes in Computer
Science. Springer-Verlag, 2000.

6. E. Börger, A. Cavarra, and E. Riccobene. A simple formal model for UML State
Machines. In Y. Gurevich, M. Odersky, and L. Thiele, editors, Proc. ASM 2000,
Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

7. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, 1997.

8. E. Börger, J. Schmid, W. Schulte, and R. Stärk. Java and the Java Virtual Ma-
chine. Lecture Notes in Computer Science. Springer-Verlag, 2000. to appear.

9. E. Börger and W. Schulte. Modular Design for the Java Virtual Machine Archi-
tecture. In E. Börger, editor, Architecture Design and Validation Methods, pages
297–357. Springer-Verlag, 2000.

10. A. Brüggemann, L. Priese, D. Rödding, and R. Schätz. Modular decomposition
of automata. In E. Börger, G. Hasenjäger, and D. Rödding, editors, Logic and
Machines: Decision Problems and Complexity, number 171 in Lecture Notes in
Computer Science, pages 198–236. Springer-Verlag, 1984.

11. G. D. Castillo. ASM-SL, a Specification Language based on Gurevich’s Abstract
State Machines, 1999.

12. M. Davis. The Universal Computer: The Road from Leibniz to Turing. W.W.
Norton, New York, 2000. to appear.

13. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

14. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1), 2000.

15. Y. Gurevich and M. Spielmann. Recursive abstract state machines. Journal of
Universal Computer Science, 3(4):233–246, 1997.

16. S. C. Kleene. Introduction to Metamathematics. D. van Nostrand, Princeton, New
Jersey, 1952.

17. D. L. Parnas. Information distribution aspects of design methodology. In Infor-
mation Processing 71, pages 339–344. North Holland Publishing Company, 1972.

18. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at: http://-
www.tydo.de/AsmGofer, 1999.

19. A. Zamulin. Object-oriented Abstract State Machines. In Proceedings of the 28th
Annual Conference of the German Society of Computer Science. Technical Report,
Magdeburg University, 1998.

	Composition and Submachine Conceptsfor Sequential ASMs

